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Abstract 

In the last years there has been a growing interest in the understand
ing of a vast variety of scale invariant and critica! phenomena occurring in 
nature. Experiments and observations indeed suggest that many physical 
systems develop spontaneously power law behavior both in space and time. 
Pattern formation, aggregation phenomena, biological and geological sys
tems, disordered materials, clustering of matter in the universe are just some 
of the fields in which scale invariance has been observed as a common basic 
feature. In this respect fractal geometry has changed the way we look at na
ture and it has expanded the frontiers of physical sciences to include a wide 
variety of strongly irregular systems and complex phenomena. The value 
and impact of fractals, however, is still rather controversial. In this lecture 
we discuss the real advancements as well as the present limitations of this 
field by presenting it along three distinct lines, which constitute evolutionary 
stages: (i) Fractal geometry as a mathematical framework that allows us to 
identify and characterize scale invariant properties in natural phenomena. 
(ii) The development of physical models for the spontaneous development 
of fractal structures in well defined physical phenomena. (iii) The attempts 
to construct physical theories that should provide a full understanding for 
the self-organized origin of fractal structures in various systems. The style 
of the present discussion will be colloquial but the references can give a clue 
for a more technical level. 

l lntroduction 

Statistical physics is undergoing a profound transformation. The introduction of 

new ideas, inspired by fractal geometry and scaling, irreversible and non-ergodic 

dynamical systems leading to self-organization and stochastic processes of vari

ous types, leads to a considerable enrichment of the traditional framework and 

provides efficient methods for characterising and understanding complex systems. 
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The physics of scale-invariant and complex systems is a novel field which is in

cluding tapies from several disciplines ranging from condensed matter physics 

to geology, biology, astrophysics and economies [l]. This widespread interdis

ciplinarity corresponds to the fact that these ideas allow us to look at natural 

phenomena in a radically new and original way, eventually leading to unifying 

concepts independently of the detailed structure of systems. 

In scale invariant phenomena, events and information spread over a wide range 

of length and time scales, so that no matter what is the size of the scale considered 

one always observes surprisingly rich structures. These systems, with very many 

degrees of freedom, are usually so complex that their large scale behaviour cannot 

be predicted from the microscopic dynamics. New types of collective behaviour 

arise and their understanding represents one of the most challenging areas in 

modern statistical physics. 

The interest in this field has been largely due to two factors. First the emerg

ing availability of high powered computers over the past decade has enabled to 

readily simulate complex and disordered systems. Second the cross disciplinary 

mathematical language for describing these phenomena evolving under conditions 

far from equilibrium has only become available in the past years. The study of 

critica! phenomena in second order transitions introduced the concepts of scal

ing and power law behavior [2]. Fractal geometry [3] provided the mathematical 

framework for the extension of these concepts to a vast variety of natural phe

nomena. 

The physics of complex systems, however, turned out to be effectively new 

with respect to critica! phenomena. The theory of equilibrium statistical physics 

is strongly based on the ergodic hypothesis and scale invariance develops at the 

critica! equilibrium between order and disorder. Reaching this equilibrium requires 

the fine tuning of various parameters. On the contrary, most of the scale-free 

phenomena observed in nature are se/f-organized, in the sense that they sponta

neously develop from the generating dynamical process. One is then forced to seek 

the origín of the scale invariance in nature in the rich domain of nonequilibrium 

systems and this requires the development of new ideas and methods. 

The realization that certain structures exhibit fractal properties does not tell 

us why this happens but it is crucial to formulate the right questions. The impact 

of fractals in physics can be assessed along three different lines of increasing 

complexity: 

(a) Fractal geometry merely as a mathematical framework which leads to a re-
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analysis of known data that results in a revamping of long-standing points of view. 

This permits to include into the scientific areas many phenomena characterised 

by intrinsic irregularities which have been previously neglected because of the lack 

of an appropriate mathematical. The main examples of this type can be found in 

the geophysical and astrophysical data and in Section 3 we consider one example 

in detail. The possibility of extending these methods also to biological evolution 

in terms of complex adaptive systems is also an active field of research. 

(b) The development of physical models for systems that exhibit fractal and Self

Organized Critica! (SOC) behaviour. From a mathematical paint of view the 

problems explored are paticularly difficult. Often they consist of iterative systems 

with many degrees of freedom and irreversible dynamics. Very little can be pre

dicted a priori for systems of this complexity, even though sometimes they can 

be very easy to fomulate. In this respect computer simulations represent an es

sential method in the physics of complex and scale invariant systems. While the 

great majority of the theoretical activity is based upon "toy models" which barely 

resemble real nature, it is important to build a bridge between theory and real 

experiments and this another basic task of computer simulations. This implies 

the development of models with the properties of a greater realism and large scale 

simulations which can be used also in material characterization. A byproduct of 

this approach is the application of fractal concepts to the solution of particu

lar experimental problems (oil industry, disordered materials, phase nucleation, 

crystal growth etc.) 

(c) The construction of complete physical theories that allow us to understand the 

self-organized origin of fractal structures as well as all the other relevant properties 

in various physical systems and phenomena. At a phenomenological level, scaling 

theory, inspired to usual critica! phenomena, has been successfully used. This 

is essential for the rationalization of the results of computer simulations and 

experiments. This method allows us to identify the relations between different 

properties and exponents and to focus on the essential ones. The situation is 

completely different in relation to the formulation of a microscopic fundamental 

theory. The theoretical approach is particularly difficult because the statistical 

physics of systems far from equilibrium lies far beyond the usual equilibrium theory. 

This implies that the time development is intrinsically irreversible and that it 

cannot be eliminated by some form of the ergodic hypothesis. In equilibrium 

statistical mechanics it is in fact possible to eliminate the specific dynamical 

evolution and to assign directly a Boltzmann weight to a given configuration. In 
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the case of self-organized fractal structures this is usually not possible and a full 

knowledge of the dynamical history is necessary. This implies the development of 

theoretical concepts of novel type. 

2 Scale invariance and intrinsic irregularity 

Most of theoretical physics is based on analytical functions and differential equa

tions. This implies that structures should be essentially smooth and irregularities 

are treated as single fluctuations or isolated singularities. The study of criti

ca! phenomena and the development of the Renormalization Group (RG) theory 

in the seventies was therefore a major breakthrough [l, 4]. One could observe 

and describe phenomena in which intrinsic self-similar irregularities develop at 

all scales and fluctuations cannot be described in terms of analytical functions. 

The theoretical methods to describe this situation could not be based on ordinary 

differential equations because self-similarity implies the absence of analyticity and 

the familiar mathematical physics becomes inapplicable. In some sense the RG 

corresponds to the search of a space in which the problem becomes again ana

lytical. This is the space of scale transformations but not the real space in which 

fluctuations are extremely irregular. For a while this peculiar situation seemed 

to be restricted to the specific critica! point corresponding to the competition 

between order and disorder. In the past years instead, the development of fractal 

geometry [3], has allowed us to realize that a large variety of structures in nature 

are intrinsically irregular and self-similar. 

Mathematically this situation corresponds to the fact that these structures are 

singular in every point. This property can be now characterized in a quantitative 

mathematical way by the fractal dimension and other suitable concepts. However, 

given these subtle properties, it is clear that making a theory for the physical origin 

of these structures is going to be a rather challenging task. This is actually the 

objective of the present activity in the field [5]. 

The main difference between the popular fractals like coastlines, mountains, 

trees, clouds, lightning, etc. and the self-similarity of critica! phenomena is that 

criticality at phase transitions occurs only with an extremely accurate fine-tuning 

of the critica! parameters involved. In the more familiar structures observed in na

ture instead the fractal properties are self-organized, they develop spontaneously 

from the dynamical process. lt is probably in view of this important difference 

that the two fields of critica! phenomena and fractal geometry have proceeded 
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Figure l: Example of analytical and nonanalytic structures. Top panels: (Left) A 
cluster m a homogenous distribution. {Right) Density profile. In this case 
the fluctuation corresponds to an enhancement the two-dimensional Eu
clidean space. (Right) Density profile. In this case the fluctuations are 
non-analytical and there 1s no reference value, t.e. the average density. 
The average density scales as a power law from any occupied point of the 
structure. 
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somewhat independently, at least at the beginning. The fact that we are tradi

tionally accustomed to think in terms of analytical structures has crucial conse

quences on the type of questions we ask and on the methods we use to answer 

them. lf one has never been exposed to the subtleness on nonanalytic structures, 

it is natural that analyticity is not even questioned. lt is only after the above 

developments that we could realize that the property of analyticity can be tested 

experimentally and that it may or may not be present in a given physical system. 

3 Fractal properties of the large-scale universe 

In this section we discuss an example of the first category mentioned in the 

introduction in which the concept of Fractal Geometry, used as a mathematical 

tool, discloses new pr~perties for the large-scale strucure of the universe and leads 

to fascinating and controversial perspectives. 

The three-dimensional distribution of galaxies appears quite irregular and it 

consists of large structures and large voids. In the example shown in Figure 2 our 

galaxy is at the center and the empty slice corresponds to the galactic plane in 

which observations are difficult. Note that the picture is a projection (orthogonal) 

and this gives a smoothing effect to the eye. lf one could rotate this picture as 

in a video the large structures and large voids would be better defined. Despite 

these structures the universe is believed to be homogeneous at large scale and 

this property is supposed to be in agreement with the data of Figure 2. 

Some years ago we proposed a new approach for the analysis of galaxy and 

cluster correlations based on the concepts and methods of modern statistical 

physics. This led to the surprising result that galaxy correlations are fractal and 

not homogeneous up to the limits of the available catalogues. In the meantime 

many more red shifts have been measured and we have extended our methods 

also to the analysis of various other properties [6, 8]. 

The usual statistical methods, based on the assumption of homogeneity [9], 

appear therefore to be inconsistent for all the length scales probed until now. A 

new, more general, conceptual framework is necessary to identify the real physical 

properties of these structures, and theories should shift from "amplitudes" to 

"exponents" in the sense discussed in the previous section. 

The new analysis shows that all the available data are consistent with each 

other and show fractal correlations (with dimension D = 2) up to the deepest 

scales probed until now (lO00Mpc) [7, 8]. In these units, megaparsecs, the radius 
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Figure 2: Three-dimension a l di st ribution of ga laxies arou nd our ga laxy ( cen tra l point) . 
The zone represente? corresponds to a bou t one tenth of the size of the en t ire 

un1 verse . 

of the entire universe is about 4000Mpc , while the size of a single galaxy (a point 

in our analysis) is about 0 .01-0 .lMpc . The distribution of visible matter in the 

universe is therefore fractal and not homogeneous. In addition , the luminosity 

distribution is correlated with the space distribution in a specific way characterized 
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by multifractal properties. These facts lead to fascinating conceptual implications 

about our knowledge of the universe and to a new scenario for the theoretical 

challenge. 

This result has caused a large debate in the field [6] because it is in contrast 

with the usual assumption of large-scale homogeneity which is at the basis of most 

theories. Actually homogeneity represents much more than a working hypothesis 

for theory, it is often considered as a paradigm or principie and for some authors 

it is conceptually absurd even to question it [9]. 

For other authors instead, homogeneity is just the simplest working hypoth

esis and the idea that nature might actually be more complex is considered as 

extremely interesting (10]. These two points of view are not so different after 

all because, if something considered absurd becomes real, then it is indeed very 

excitin g. 

The problem is that these concepts touch directly the so-called Cosmological 

Principie (CP), which represents one of the landmarks of the field of cosmology .. 

lt is quite reasonable to assume that we are not in a very special point of the 

universe and to consider this as a principie, the CP. The usual mathematical 

implication of this principie is that the universe must be homogeneous [9]. This 

reasoning implies the hidden assumption of analyticity that often is not even 

mentioned. In fact the above reasonable requirement only leads to local isotropy. 

For an analytical structure this also implies homogeneity (10]. However, if the 

structure is not analytical, the above reasoning does not hold. For example a 

fractal structure has local isotropy but not homogeneity. In simple terms this 

means that all galaxies live in similar enviroments made of structures and voids 

(statistical isotropy). Therefore a fractal structure satisfies the CP in the sense 

that all the points are essentially equivalent (no center or special points) but this 

does not imply that these points are distributed uniformly. 

The usual correlation analysis is performed by estimating at which distance 

(ro) the density fluctuations are comparable to the average density in the sample. 

In practice this is done by considering the function ç(r) =< n(O)n(r) > / < 
n >2 -1, and by defining the characteristic length (ro) as the point at which 

ç(ro) = l. Now everybody agrees that there are fractal correlations at least at 

small scales. The important physical question is therefore to identify the distance 

>.0 at which, possibly, the fractal distribution has a crossover into a homogeneous 

one. This would be the real correlation length beyond which the distribution can 

be approximated by an average density. The problem is therefore to understand 
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the relation between r0 and À0 : are they the same or closely related or do they 

correspond to different properties? 

This is actually a subtle point with respect to the concepts discussed in Sec

tion 2. In fact, if the galaxy distribution becomes really homogeneous at a scale 

Ào within the sample in question, then the value of r 0 is proportional to Ào and 

is related to the real correlation properties of the system. 

lf, on the other hand, the fractal correlations extend up to the sample limits, 

then the resulting value of r0 has nothing to do with the real properties of the 

galaxy distribution but it is fixed just by the size of the sample (6). 

Given this situation of ambiguity with respect to the real meaning of r0 , it is 

clear that the usual correlation study in terms of the function ç(r) is not the ap

propriate method to clarify these basic questions. The essential problem is that, 

by using the function ç(r), one defines the amplitude of the density fluctuations 

by normalizing them to the average density of the sample in question. This im

plies that the observed density should be the real one and it should not depend 

on the given sample or on its size apart from Poisson fluctuations. However, if 

the distribution shows long-range (fractal) correlations, this approach becomes 

meaningless. For example if one studies a fractal distribution with ç(r) a char

acteristic length r0 will be identified, but this is clearly an artifact because the 

structure is characterized exactly by the absence of any defined length (6]. 
The appropriate analysis of pair correlations should therefore be performed 

using methods that can check homogeneity or fractal properties without assuming 

a priori either one. The simplest method to do this is to consider directly the 

conditional density r(r) =< n(O)n(r) > without comparing it to the average 

density. This is not all however because one has also to be careful not to make 

hidden assumptions of homogeneity in the treatment of the boundary conditions 

[6, 8]. For these reasons the statistical validity of a sample is limited to the radius 

(Rs) of the largest sphere that can be contained in the sample. 

The main data of our correlation analysis are collected in Figure 3 in which 
we report the conditional density as a function of distance for various galaxy 

catalogues. The properties derived from different catalogues are compatible with 

each other and show a power law decay (fractal correlations) for the conditional 

density from lMpc to 150Mpc without any tendency towards homogenization 

(flattening). Using also other data for which only a limited analysis is possible, 

one can see that the fractal behavior continues up to about lO00Mpc. (For a 

detailed discussion see (81). This implies necessarily that the value of ro (derived 
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from the ç(r) approach) is actually spurious and it will scale with the sample size 

Rs as discussed in detail in (8]. The behaviour observed corresponds to a fractal 

structure with dimension D = 2. A homogeneous distribution would correspond 

to a flattening of the conditional density which is never observed. 
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Figure 3: Correlation analysis for various three dimensional galaxy catalogues in the 
range O.l - lOOOMpc. The plot refers to the behavior of the conditional 
density as a function of distance. A reference line with slope -1 is also 
shown (i.e. fractal dimension D= 2). A constant density would correspond 
to a flat behavior. 
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lt is important to remark that the usual correlation analyses have had a pro

found influence in the field in various ways [9]: first the various catalogues appear 

in conflict with each other. This has generated a strong mutual criticism about 

the validity of the data between different groups. In other cases the discrepancies 

observed have been considered as real physical problems for which various the

oretical approaches have been proposed. These problems are, for example, the 

galaxy-cluster mismatch, luminosity segregation, the richness clustering relation 

and the linear and non-linear evolution of the perturbations corresponding to the 

"small" or "it large" amplitudes of fluctuations. We can now see that all this 

problematic is not real and it arises only from a statistical analysis based on inap

propriate assumptions that do not find a correspondence in physical reality. lt is 

also important to note that, even if the galaxy distribution would eventually be

come homogeneous at some large scale, the use of the above statistical concepts 

is anyhow inappropriate for the range of scales in which the system shows fractal 

correlations as those shown in Figure 3. 

Up to now we have discussed galaxy correlations only in terms of the set of 

points corresponding to their position in space. Galaxies can be also characterized 

by their luminosity (related to their mass) and the luminosity distribution is then 

a full distribution and not a simple set. lt is natural then to consider the possible 

scale invariant properties of this distribution. This requires a generalization of the 

fractal dimension and the use of the concept of multifractality [8]. A multifractal 

analysis shows that also the full distribution is scale invariant and this leads to a 

new and important relation between the Schechter luminosity distribution and the 

space correlation properties. This allows us to understand various morphological 

features (like the fact that large elliptic galaxies are typically located in large clus

ters) in terms of multifractal exponents. This leads also to a new interpretation 

of what has been called the luminosity segregation effect [8]. 

In summary our main points are: 

(a) The highly irregular galaxy distributions with large structures and voids strongly 

point to a new statistical approach in which the existence of a well defined aver

age density is not assumed a priori and the possibility of non-analytical properties 

should be addressed specifically. 

(b) The new approach for the study of galaxy correlations in all the available 

catalogues shows that their properties are actually compatible with each other and 

they are statistically valid samples. The severe discrepancies between different 

187 



catalogues that have led various authors to consider these catalogues as not fair, 

were due to the inappropriate methods of analysis. 

(c) The correct two-point correlation analysis shows well-defined fractal correla

tions up to the present observational limits, from l to lO00Mpc. with fractal 

dimension D = 2. 

(d) The inclusion of the galaxy luminosity (mass) leads to a distribution which is 

shown to have well-defined multifractal properties. This leads to a new, important 

relation between the luminosity function and that galaxy correlations in space. 

From the theoretical paint of view, the fact that we have a situation charac

terized by self-similar structures implies that we should not use concepts which 

make reference to the average density or related properties. One cannot talk about 

"small" or "large" amplitudes for a self-similar structure because of the lack of a 

reference value like the average density. Physics should shift from "amplitudes" 

towards "exponents" and the methods of modern statistical Physics should be 

adopted. This leads to a new, fascinating situation, that has been uncovered by 

the introduction of the concepts of self-similarity and fractal geometry. 

4 Fractal physical models 

The key question is how does nature produce fractal structures. The first physical 

model that shed light on this question was the Diffusion Limited Aggregation 

(DLA) model of Witten and Sander [11) introduced in 1981. The model was 

inspired by the observation of growing aggregates that were found to exhibit 

fractal structures. One starts with a seed particle and introduces a new particle 

at some (large enough) distance R that executes a random walk on a lattice. 

When the particle reaches a site adjacent to the seed, it is frozen in that position 

and extends the seed. A new particle is then introduced until it touches the new 

seed and so on. The iteration of this simple algorithm produces structures of great 

complexity with a fractal dimension D= 1.7 (for planar growth). An interesting 

variant of DLA is the Cluster-Cluster aggregation model [12) where one starts 

with many partides executing random walks that are allowed to aggregate into 

clusters. Clusters of all sizes continue to execute random walks forming cluster 

aggregates and so on. Each cluster turns out to be fractal with a dimension 

that is lower than in the DLA model. In addition the distribution of cluster sizes 

exhibits power-law behavior. The Cluster-Cluster model captures the physics of 

dust or smoke clouds and colloids [13) as shown in Figure 4. 
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In 1984 Niemeyer et al. introduced the Dielectric Breakdown Model (DBM) 

[14] inspired by discharges in gases (e.g. lightning). The discharge pattern is as

sumed to be composed of discrete points connected by bonds (see Figure 5) and 
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Figure 5: Schematic picture of DBM growth process. The grown structure is assumed 
to be equipotential. From the Laplace equation one can compute the local 
field for the bonds around the structure. The growth probability is related 
to the local field. A bond is selected and added to the structure and the 
process is then iterated. 

the entire pattern at a given time is considered equipotential. At each perimeter 

paint, a growth probability is assigned to be proportional to the local electric field 

E or to a power E"l1. The electric field is determined from Laplace's equation for 

the electrical potential. The stochastic iteration of the model produces fractal 

structures with fractal dimensions that depend on h. In the case h = l one 

recovers the DLA structure. Apart from generalizing the DLA growth process 

the DBM illustrates the underlying mathematical properties in relation to partial 

differential equations like Laplace equation. This connection is quite surprising 

because usually Laplace equation produces smooth solutions: the potential at 

a given paint is the average of the potential of the neighburing points. Here 

we see instead that a stochastic growth scheme in which the probabilities are 
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defined by Laplace equation drives spontaneously the growth boundaries into a 

highly irregular fractal structure . In Figure 6 we show a fractal structure of the 

DLA/ DBM in which the black and white stripes provide a visual impression of 

the variation of the electrical potential around the structure. A pair of black and 

white stripes corresponds to a change of a decade in the potential. 

Figure 6: DLA/ DBM cluster with potential stripes . 

These "Laplacian" fractals are believed to capture the essential fractal prop

erties of a variety of phenomena such as electrochemical deposition, dielectric 

breakdown , viscous fingering in fluids , the propagation of fractures and various 

properties of colloids [15]. 
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The essential properties of these growth models are (for a detailed discussion 

see [51): 

- The growth process is irreversible. There is a growing interface and a "frozen" 

zone that will not be modified by further growth. The asymptotic properties and 

the fractal dimension refer to the frozen asymptotic structure. 

- In order to assign a statistical weight to a structure it is necessary to know its 

entire growth history. 

- The dynamics of these models evolves spontaneously into a fractal structure 

without the fine-tuning of any critica! parameter, as is instead the case in ordinary 

critica! phenomena. 

- The degree of universality appears to be reduced with respect to equilibrium 

critica! phenomena. For example in DBM the fractal dimension is a continuous 

function of the parameter h, but even for the standard DLA model, radial or 

cylindrical boundary conditions produce non-trivial differences. 

The concept of spontaneous generation of complex or critica! structures, also 

called Self-Organized Criticality (SOC), has been recently emphasized and in

vestigated in the sandpile models introduced by Bak and coworkers [16]. T o 

illustrate the basic ideas of SOC, they introduced a cellular automaton model 

of sandpiles. The random addition of sand grains drives the system towards a 

stationary state with a scale-free distribution of avalanches. As in the previous 

fractal growth models, also in this model criticality seems to emerge automati

cally without the fine-tuning of parameters. Because of the enormous conceptual 

power, SOC ideas have invaded rapidly throughout the sciences, from physics and 

geophysics to biology and economies, as a prototype mechanism to understand 

the manifestation of scale invariance and complexity in natural phenomena. lt is 

interesting to compare in Table l the properties of these new models of fractal 

growth and SOC with those of standard critica! phenomena represented by the 

lsing model. 

Another model that was developed to simulate the displacement of a fluid 

in a porous medium is lnvasion Percolation (IP) [15]. The porous medium is 

represented by a lattice where each bond has an assigned ( quenched) value for 

its conductance. The dynamics of the fluid is to invade the bond with highest 

conductance within all its perimeter bonds. This model leads spontaneously to a 

fractal structure that is essentially identical to the percolating cluster of standard 

percolation [16). The IP model, characterised by an extrema! statistics, has re

cently inspired simple SOC models aimed at the description of the propagation of 
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SELFSIMILARITY: PHYSICAL MODELS 

Ising-Type {70's) DLA/DBM {81) Sandpile {87) 

Equilibrium NON LINEAR, IRREVERSIBLE DYNAMICAL 
Statistical EVOLUTION. 
Mechanics Assigning the statistical weight of a structure requires the 

knowledge oí its complete growth history. 
Ergodicity 

Boltzmann Weight l CRITICAL BEHAVIOR IS SELF-ORGANIZED 
l ATTRACTIVE FIXED POINT 

Standard Critica! behaviour 
Fine Tuning: T = Te 

Repulsive Fixed Point Asymptotically frozen Dynamical driven 
fract.il structure stationary state with 

{=(T-Te)-" avalanches of all sizes 
Long range interactions 

Approach to the critica! point (Laplacian) 

l l Complex contínuum limit: Lattice -1 f(r) -- r(d-2+'1) regularization seems to be essential 

Anomalous dimension exactly Problem: understand and Problem: distribution of 
at T =Te compute the fractal avalanche sizes P(s) = .-.. 

dimension D 

Theory: Renormallzation Group l Theory: NEW CONCEPTS ARE NEEDED 

Table l: Comparison between the lsing model and two of the most popular models 
that generate fractal or scale invariant structures in a self-organized way. 

l 
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irregular surfaces or interfaces in a disordered medium and of scale-free events in 

biological evolution. Extrema! dynamics in a quenched medium is also the essen

tial theoretical ingredient of the Bak and Sneppen model of biological evolution 

[17]. 
Another principal subject where fractals play an essential role is the study of 

interface growth in disordered systems e.g. Kardar Parisi Zhang (KPZ) equation 

[18]. lf we consider the DBM model and eliminate the effect of the La place equa

tion by setting h = O, all the perimeter bonds have the same growth probability. 

This is the Eden model [14] that leads to compact structures with an irregular 

surface characterized by a critica! exponent. These models of surface growth 

are meant to describe the deposition of partides, the propagation of chemical 

reaction or fire fronts, the interface between fluids or a fluid in a porous medium 

under appropriate conditions [19]. 

5 New theoretical concepts and self-organization 

The physical models discussed in the previous sections illustrate a number of 

physical situations that can lead to the generation of fractal structures. Com

parison with experimental data suggests that these models capture the essential 

physics of various phenomena that produce fractal structures in nature. Such 

models however do not constitute a physical theory, and this is the next step of 

our discussion. 

F rom the theoretical point of view the idea of many authors is that DLA/DBM 

and the other SOC models pose questions of a new type for which it would be 

desirable to have a common theoretical scheme [20]. The attempts to use the 

theoretical concepts developed for critica! phenomena like field theory and the 

RG have been quite problematic for these new phenomena. The basic differences 

with respect to equilibrium phase transition is that the dynamics is irreversible 

and self-organized. There is no ergodic principie and it is not possible to assign a 

Bo~tzmann weight to a configuration without knowing its entire growth history. 

The theoretical effort in this field can be separated into phenomenological 

or scaling theories and microscopic theories. The first approach has been exten

sively developed in the past years and it consists in defining consistency relations 

between the assumed scaling properties of the system. This phenomenological 

approach is essential in the analysis of computer simulations to identify and ex

tract the relevant essential information. The microscopic approach consists in a 
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comprehensive understanding of all the SOC and fractal properties of the system 

directly from the knowledge of the microscopic dynamics. In some specific cases 

exact results can also be obtained. The development of a microscopic theory is 

an extremely difficoult task in which some interesting progress has been made 

but many fundamental questions are still open. 

lt was natural however to expect that some of the theoretical concepts de

veloped for critica! phenomena should also work for fractal models. A notable 

attempt in this direction was made by Kardar, Parisi and Zhang (KPZ) [18] who 

showed that the dynamics of the growing profile of the Eden model surface growth 

can be described by a stochastic differential equation for which field theory and 

RG methods can be succesfully applied. This approach corresponds to mapping 

the irreversible dynamics of the problem onto an equilibrium problem for the 

statistics of the profile. Various experiments of surface growth show however sur

face fluctuations with exponents that are higher than those predicted by the KPZ 

equation. This is probably due to quenched disorder that cannot be described in 

terms of an effective equilibrium problem [19). 

This brings us to the crucial problem of fractal growth. We have seen that 

most fractal growth models like DLA, DBM, Cluter-Cluster aggregation, lnvasion 

Percolation and the sandpile models are characterized by an intrinsically irre

versible dynamics. As a result the statistical weight of a configuration can be 

defined only with the knowledge of its entire history. In other words the temporal 

evolution is just as important as the spatial correlations, which is not at all the 

case in equilibrium phase transitions. In the latter, the ergodic principie allows 

one to eliminate the temporal dynamics and assign a statistical weight for each 

configuration in terms of the Boltzmann factor. Another important difference is 

that most fractal structures are self-organized. For these and other more technical 

reasons like the absence of an upper critica! dimension in some of these models 

the usual methods of field theory and RG did not lead very far for this class of 

models. 

One attempt of constructing a physical theory for the self-organized fractals 

with irreversible dynamics is the Fixed Scale Transformation (FST) [5]. This 

approach combines a technique of lattice path integrals to take into account the 

irreversible dynamics with the study of the scale invariant dynamics inspired by the 

RG theory. This combination allows us to compute the pair correlations induced 

by the irreversible dynamics between block variables of arbitrary size. In this 

way it is possible to understand the origin of self-organization in fractal growth in 
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terms of an attractive fixed point for the scale invariant dynamics and to compute 

analytically the fractal dimension. At the moment the FST framework seems to 

be the only general approach for the broad class of self-organized fractals and 

related phenomena. This method has been succesfully applied to DLA/DBM, 

to Cluster-Cluster aggregation, to fracture models, to lnvasion Percolation and 

related models [5] and finally al!¡o to the sandpile models [21]. This situation 

supports therefore the conjecture [20] that DLA and the sandpile models pose 

questions of a new type for which it would be desirable to define a common 

theoretical scheme. 

There are severa! other approaches that address similar issues for specific 

problems, e.g. the work of Nagatani and others [22] and of Halsey [23] for DLA, 

the elegant algebraic methods of Dhar et al [24), the field theory approaches of 

Kardar et al [25] and of Bak and coworkers [26] for certain properties of SOC 

models and the Run Time Statistics (27] to deal with problems with quenched 

disorder like l P and the Bak and Sneppen model. 

6 Open problems and further developments 

As we have mentioned there has been some relevant progress on the theoretical 

side with the introduction of new ideas and methods. However, many important 

questions remain open. The objective would be to develop these ideas into a 

general and systematic theoretical framework with microscopic predictive power 

in relation to fractal growth and SOC properties. lt would also be important 

to clarity the relations between these new models and usual critica! phenomena 

especially in relation to the properties of self-organization and the concept of 

universality. For example a crucial issue is the role of universality in fractal and 

SOC phenomena. In usual critica! phenomena the same exponents that define the 

onset of magnetisation also describe the liquid va pou r transition in water. T his 

strong universality appears to be a characteristic of equilibrium systems. Self

organized systems, on the other hand, do not seem to exhibit the same degree 

of universality as the fractal dimension can be easily altered by relatively simple 

changes in the growth process. This reduced universality is sometimes viewed as 

a negative element because one is forced to describe specific systems instead of 

a single universal model. The truth is probably the opposite. Some theoretical 

concepts can be considered as general or universal, but the inherent diversity of 

the various models that have been studied adds another fascinating dimension in 
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the intellectual search. After all, the SOC fractal structures we observe in nature 

are quite various and different from each other. The preliminary knowledge we 

have at the moment suggests that there are some universal principies but the 

specific properties depend on the specific process. lt is possible that this has 

to do with the fact that the domain of irreversible phenomena is much broader 

than that of equilibrium statistics. The definition of the classes and laws for this 

broader area is certainly one of the main tasks of the theoretical effort in this 

field. 
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